## A Numerical Model for Three-Dimensional Analysis of Vibration-Induced Flow

### 生産技術研究所 革新的シミュレーションセンター 長谷川研究室 http://www.vsklab.iis.u-tokvo.ac.ip

## Vibration-Induced Flow (VIF)





## Standard two-dimensional analysis





Under the two-dimensional assumption

## To develop a numerical tool to analyze three-dimensionality of VIF Numerical procedure

#### Computational domain and governing equations





Vibration parameter : f = 1000 Hz, A = 4 µm

#### ■ Time averaging of flow field



## Vertical distribution of azimuthal velocity magnitude

■ Contour plots in r-y plane Observation area .



Experiment (PIV measurement)

- Vertical distributions IV...I (um/s)
  - · Both profiles agreed well Velocity values increased towards the tip of the pillar
- Similar trend in terms of the peak position of r = 130 µm at 40 < v < 80 µm</li> . The velocity decays as the position gets closer to the bottom wall

## Visualization of three dimensionality of the flow

# Vector plot in the vertical plane



Vortical motion is generated Summary

## Particle paths subjected to the mean flow









#### Tracer particles performed a three-dimensional motion The similar path could be seen in experimental observation.

Succeeded in reproducing three-dimensionality of Vibration-Induced Flow Numerical code was validated by experimental measurement